PGC-1α induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle.
نویسندگان
چکیده
RATIONALE Mechanisms of angiogenesis in skeletal muscle remain poorly understood. Efforts to induce physiological angiogenesis hold promise for the treatment of diabetic microvascular disease and peripheral artery disease but are hindered by the complexity of physiological angiogenesis and by the poor angiogenic response of aged and patients with diabetes mellitus. To date, the best therapy for diabetic vascular disease remains exercise, often a challenging option for patients with leg pain. Peroxisome proliferation activator receptor-γ coactivator-1α (PGC-1α), a powerful regulator of metabolism, mediates exercise-induced angiogenesis in skeletal muscle. OBJECTIVE To test whether, and how, PGC-1α can induce functional angiogenesis in adult skeletal muscle. METHODS AND RESULTS Here, we show that muscle PGC-1α robustly induces functional angiogenesis in adult, aged, and diabetic mice. The process involves the orchestration of numerous cell types and leads to patent, nonleaky, properly organized, and functional nascent vessels. These findings contrast sharply with the disorganized vasculature elicited by induction of vascular endothelial growth factor alone. Bioinformatic analyses revealed that PGC-1α induces the secretion of secreted phosphoprotein 1 and the recruitment of macrophages. Secreted phosphoprotein 1 stimulates macrophages to secrete monocyte chemoattractant protein-1, which then activates adjacent endothelial cells, pericytes, and smooth muscle cells. In contrast, induction of PGC-1α in secreted phosphoprotein 1(-/-) mice leads to immature capillarization and blunted arteriolarization. Finally, adenoviral delivery of PGC-1α into skeletal muscle of either young or old and diabetic mice improved the recovery of blood flow in the murine hindlimb ischemia model of peripheral artery disease. CONCLUSIONS PGC-1α drives functional angiogenesis in skeletal muscle and likely recapitulates the complex physiological angiogenesis elicited by exercise.
منابع مشابه
THE EFFECTS OF INTERVAL TRAINING INTENSITY ON SKELETAL MUSCLE PGC-1Α IN TYPE2 DIABETIC MALE RATS
Background: The purpose of this study was to compare the effects of a 12 weeks interval training with high and moderate intensity on PGC-1α of skeletal muscle in type 2 diabetic male rats. Methods: 40 male rats were divided into two groups: High fat diet (HFD) (n=32) and standard diet (C) (n=8) for 10 weeks. After inducing type2 diabetes via STZ, 8 diabetic rats (D) and 8 rats in group C rats ...
متن کاملRegulation of PGC-1α Isoform Expression in Skeletal Muscles
The coactivator PGC-1α is the key regulator of mitochondrial biogenesis in skeletal muscle. Skeletal muscle expresses several PGC-1α isoforms. This review covers the functional role of PGC-1α isoforms and the regulation of their exercise-associated expression in skeletal muscle. The patterns of PGC-1α mRNA expression may markedly differ at rest and after muscle activity. Different signaling pat...
متن کاملβ-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1α in skeletal muscle.
There are reports that the β-adrenergic agonist clenbuterol induces a large increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in skeletal muscle. This has led to the hypothesis that the increases in PGC-1α and mitochondrial biogenesis induced in muscle by endurance exercise are mediated by catecholamines. In the present study, we evaluated this possibility and fou...
متن کاملSkeletal Muscle-Specific Expression of PGC-1α-b, an Exercise-Responsive Isoform, Increases Exercise Capacity and Peak Oxygen Uptake
BACKGROUND Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fi...
متن کاملارتفاع شبیهسازی شده بیشتر از تمرین هوازی، مسیر سازشی مرتبط با PGC-1α را بطرف آنژیوژنز در بافت قلبی موشهای نر نژاد ویستار پیش میبرد
Background & Aims: Hypoxia and exercise training increase the capillary density of the muscle and the heart and is one of the important reasons for the development of aerobic exercise and the prevention and treatment of many diseases. The purpose of this study was to compare the effects of simulated heights and aerobic training on PGC-1α angiogenesis in the heart tissue. Materials & Methods: T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 115 5 شماره
صفحات -
تاریخ انتشار 2014